24 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Натриевый насос это

Натриевый насос это

Активный транспорт — это сопряженный с потреблением энергии перенос молекул или ионов через мембрану против градиента концентрации. Энергия требуется потому, что вещество должно двигаться вопреки своему естественному стремлению диффундировать в противоположном направлении. Движение это обычно однонаправленное, тогда как диффузия обратима. Источником энергии для активного транспорта служит АТФ — соединение, образующееся в процессе дыхания и выполняющее в клетке роль носителя энергии. Поэтому в отсутствие дыхания активный транспорт идти не может.

Во внеклеточных и внутриклеточных жидкостях преобладают ионы натрия (Na=), ионы калия (К+) и хлорид-ионы (Сl-). На рисунке видно, что концентрации этих ионов внутри эритроцитов и в плазме крови человека весьма различны. Внутри эритроцитов, как и в большинстве клеток, концентрация калия значительно выше, чем снаружи. Другая характерная особенность заключается в том, что внутриклеточная концентрация калия превышает концентрацию натрия.

Если каким-либо специфическим воздействием, например с помощью цианида, подавить дыхание эритроцитов, то их ионный состав начнет постепенно меняться и в конце концов сравняется с ионным составом плазмы крови. Это показывает, что данные ионы могут пассивно диффундировать через плазматическую мембрану эритроцитов, но что в норме за счет энергии, поставляемой процессом дыхания, идет их активный транспорт, благодаря которому и поддерживаются концентрации, указанные на рисунке. Иными словами, натрий активно выкачивается из клетки, а калий активно накачивается в нее.

Натрий-калиевый насос

Активный транспорт осуществляется при помощи белков-переносчиков, локализующихся в плазматической мембране. Этим белкам в отличие от тех, о которых мы говорили при обсуждении облегченной диффузии, для изменения их конформации требуется энергия. Поставляет эту энергию АТФ, образующийся в процессе дыхания.

Сравнительно недавно выяснилось, что у большей части клеток в плазматической мембране действует натриевый насос, активно выкачивающий натрий из клетки. В животных клетках натриевый насос сопряжен с калиевым насосом, активно поглошаюшим ионы калия из внешней среды и переносящим их в клетку. Такой объединенный насос называют натрий-калиевым насосом |(Na+, К+)-насос|. Поскольку насос имеется почти во всех животных клетках и выполняет в них ряд важных функций, он представляет собой хороший пример механизма активного транспорта. О его физиологическом значении свидетельствует тот факт, что более трети АТФ, потребляемого животной клеткой в состоянии покоя, расходуется на перекачивание натрия и калия.

Насос — это особый белок-переносчик, локализующийся в мембране таким образом, что он пронизывает всю ее толщу. С внутренней стороны мембраны к нему поступают натрий и АТФ, а с наружной — калий. Перенос натрия и калия через мембрану совершается в результате конформационных изменений, которые претерпевает этот белок. Обратите внимание, что на каждые два поглощенных иона калия из клетки выводится три иона натрия. Вследствие этого содержимое клетки становится более отрицательным по отношению к внешней среде, и между двумя сторонами мембран возникает разность потенциалов. Это ограничивает поступление в клетку отрицательно заряженных ионов (анионов), например хлорид-ионов. Именно данным обстоятельством объясняется тот факт, что концентрация хлорид-ионов в эритроцитах ниже, чем в плазме крови (рис. 5.20), хотя эти ионы могут поступать в клетки и выходить из них за счет облегченной диффузии. Положительно заряженные ионы (катионы), напротив, притягиваются клеткой. Таким образом, оба фактора — концентрация и электрический заряд — важны при определении того, в каком направлении будут перемешаться через мембрану ионы.

Натрий-калиевый насос необходим животным клеткам для поддержания осмотического баланса (осморегуляции). Если он перестанет работать, клетка начнет набухать и в конце концов лопнет. Произойдет это потому, что с накоплением ионов натрия в клетку под действием осмотических сил будет поступать все больше и больше воды. Ясно, что бактериям, грибам и растениям с их жесткими клеточными стенками такой насос не требуется. Животным клеткам он нужен также для поддержания электрической активности в нервных и мышечных клетках и, наконец, для активного транспорта некоторых веществ, например Сахаров и аминокислот. Высокие концентрации калия требуются также для белкового синтеза, гликолиза, фотосинтеза и для некоторых других жизненно важных процессов.

Активный транспорт осуществляется всеми клетками, но в некоторых случаях он играет особо важную роль. Именно так обстоит дело в клетках эпителия, выстилающего кишечник и почечные канальцы, поскольку функции этих клеток связаны с секрецией и всасыванием.

Натриевый насос это

Активный транспорт, натриевый насос. В предыдущем разделе описаны пассивная диффузия ионов и образующийся вследствие этого мембранный потенциал при заданных внутри- и внеклеточных концентрациях ионов. Однако в результате этого процесса концентрация ионов внутри клетки стабилизируется не автоматически, поскольку мембранный потенциал несколько более электроотрицателен, чем ЕK, и намного — по сравнению с ENa (около +60 мВ). Благодаря диффузии внутриклеточные концентрации ионов, по крайней мере калия и натрия, должны уравниваться с внеклеточными.

Стабильность градиента ионов достигается посредством активного транспорта: мембранные белки переносят ионы через мембрану против электрического и (или) концентрационного градиентов, потребляя для этого метаболическую энергию. Наиболее важный процесс активного транспорта — это работа Na/K-насоса, существующего практически во всех клетках; насос выкачивает ионы натрия из клетки, одновременно накачивая ионы калия внутрь клетки. Таким образом обеспечивается низкая внутриклеточная концентрация ионов натрия и высокая-калия (табл. 1.1). Градиент концентрации ионов натрия на мембране имеет специфические функции, связанные с передачей информации в виде электрических импульсов, а также с поддержанием других активных транспортных механизмов и регулирования объема клетки (см. ниже). Поэтому неудивительно, что более 1/3 энергии, потребляемой клеткой, расходуется на Na/К-насос, а в некоторых наиболее активных клетках на его работу расходуется до 70% энергии [1, 11].

Рис 1.6. Схема Na/K-насоса АТФазы (погруженной в липидный бислой плазматической мембраны), которая за один цикл выносит из клетки три иона Na+ против градиентов потенциала и концентрации и приносит в клетку два иона К+. В ходе этого процесса одна молекула АТФ расщепляется на АДФ и фосфат. На схеме АТФаза показана как димер, состоящий из большой (функциональной) и малой субъединиц; в мембране она существует как тетрамер, образованный двумя большими и двумя малыми субъединицами

Na/K-транспортный белок представляет собой АТФазу. На внутренней поверхности мембраны она расщепляет АТФ на АДФ и фосфат (рис. 1.6). На транспортировку трех ионов натрия из клетки и одновременно двух ионов калия в клетку используется энергия одной молекулы АТФ, т. е. суммарно за один цикл из клетки удаляется один положительный заряд. Таким образом, Na/К-насос является электрогенным (создает электрический ток через мембрану), что приводит к увеличению электроотрицательности мембранного потенциала приблизительно на 10 мВ. Транспортный белок выполняет эту операцию с высокой скоростью: от 150 до 600 ионов натрия в секунду. Аминокислотная последовательность транспортного белка известна, однако еще не ясен механизм этого сложного обменного транспорта. Данный процесс описывают с использованием энергетических профилей переноса белками ионов натрия или калия (рис. 1.5,-6). По характеру изменения этих профилей, связанных с постоянными изменениями конформации транспортного белка (процесс, требующий затраты энергии), можно судить о стехиометрии обмена: два иона калия обмениваются на три иона натрия.

Читать еще:  Стяжка пола своими силами

Na/К-насос, как и изолированная Na+/К-зависимая мембранная АТФаза, специфически ингиби-руется сердечным гликозидом уабаином (строфантином). Поскольку работа Na/K-насоса представляет собой многоступенчатую химическую реакцию, она, подобно всем химическим реакциям, в значительной степени зависит от температуры, что продемонстрировано на рис. 1.7. Здесь поток ионов натрия из мышечных клеток показан относительно времени; практически это эквивалентно потоку ионов натрия, опосредованному работой Na/K-насоса, потому что пассивный поток ионов натрия против градиентов концентрации и потенциала крайне мал. Если препарат охладить примерно на 18 С, то поток ионов натрия из клетки быстро уменьшится в 15 раз, а сразу после нагревания восстановится до исходного уровня. Такое уменьшение потока ионов натрия из клетки в несколько раз больше, чем то, которое бы соответствовало температурной зависимости процесса диффузии или простой химической реакции. Сходный эффект наблюдается, когда запас метаболической энергии истощается в результате отравления динитрофенолом (ДНФ) (рис. 1.7, Б). Следовательно, поток ионов натрия из клетки обеспечивается энергозависимой реакцией — активным насосом. Другой характеристикой насоса наряду со значительной температурной и энергетической зависимостью является наличие уровня насыщения (как и у всех других химических реакций); это означает, что скорость работы насоса не может возрастать бесконечно при повышении концентрации транспортируемых ионов (рис. 1.8). В отличие от этого поток пассивно диффундирующего вещества растет пропорционально разности концентраций в соответствии с законом диффузии (уравнения 1 и 2).

Рис. 1.7. А, Б Активный транспорт Na+. Ось ординат поток радиоактивного 24Na+ из клетки (имг.-мин-1). Ось абсцисс: время с начала эксперимента. А. Клетка охлаждена с 18,3c до 0,5 С; поток Na+ из клетки в этот период заторможен.
Б. Подавление потока Na+ из клетки динитрофенолом (ДНФ) в концентрации 0-2 ммоль/л (по [13] с изменениями)

Помимо Na/K-насоса плазматическая мембрана содержит по крайней мере еще один насос—кальциевый; это насос откачивает ионы кальция (Са2+) из клетки и участвует в поддержании их внутриклеточной концентрации на крайне низком уровне (табл. 1.1). Кальциевый насос присутствует с очень высокой плотностью в саркоплазматическом рети-кулуме мышечных клеток, которые накапливают ионы кальция в результате расщепления молекул АТФ.

Натриево-калиевый насос или помпа

Однако пассивные механизмы не позволяют понять причины сохранения ионной асимметрии на протяжении всей жизни клетки, кроме того, было замечено, что многие вещества проходят через мембрану против градиента концентрации. Естественно, что этот процесс протекает с затратой энергии. Поэтому, такой механизм переноса называется активным.Активный перенос всегда является избирательным. Он был обнаружен в 1955 году Ходжкиным и названкалий-натриевый насос.

Он обеспечивает «откачивание» ионов натрия из клетки и транспорт ионов калия внутрь ее. Осуществляется это с помощью белка-переносчика. Он захватывает в цитоплазме клетки 3 иона натрия и переносят их наружу, где ионы отщепляются и таким образом выводятся из клетки. На наружной поверхности к переносчику присоединяются 2 иона калия, которые закачиваются внутрь клетки.

Работа эта осуществляется с затратой энергии, источником которой является аденозинтрифосфат (АТФ). Распад АТФ происходит под действием фермента АТФ-азы, при этом выделяется энергия, которая используется в работе калий-натриевого насоса. При сдвигах трансмембранной концентрации ионов, активность К-Na-насоса может автоматически регулироваться. В регуляции особое значение имеет аденозинтрифосфатаза, которая активируется при увеличении концентрации натрия в цитоплазме и калия в межклеточной жидкости.

Работа насоса приводит к следующим результатам:

1) поддерживает высокую концентрацию ионов К + внутри клетки, обеспечивая тем самым постоянство величины потенциала покоя,

2) поддерживает низкую концентрацию ионов натрия внутри клетки,

3) поддерживая концентрационный градиент натрия, натрий-калиевый насос способствует сопряженному транспорту аминокислот и глюкозы через клеточную мембрану.

Таким образом ионная асимметрия обусловлена как избирательной проницаемостью мембраны в состоянии покоя, так и деятельностью К-Na-насоса. Эту величину можно рассчитать по формуле Гольдмана:

Ем= ______ • ln ________________________________________________ , где

вн, н – их внутренняя и наружная концентрация.

Изменение мембранного потенциала. Потенциал действия или токи действия

Биотоки наблюдаются не только при покое, но и при возбуждении тканей. Электрические процессы всегда сопровождают возбуждение и являются лучшим его критерием.

Впервые наличие биотоков при возбуждении было обнаружено Маттеучи в 1837 году в следующем опыте. Он брал 2 н.-м. препарата и нерв одного из них накладывал на мышцу другого, нерв которого раздражался электрическим током. при включении Эл. тока сокращалась не только раздражаемая мышца, но и другая. Этот факт объясняется тем, что при сокращении первой мышцы в ней возникают биотоки, сила которых достаточна для того, чтобы возбудить лежащий на ней нерв второго препарата и вызвать сокращение иннервируемой мышцы.

В 1954 году Мюллер и Кёлликер установили, что электрические явления сопровождают и деятельность сердца. Они накладывали на сокращающееся сердце теплокровного животного нерв н.-м. препарата икроножной мышцы лягушки и наблюдали, что при каждом сокращении сердца одновременно сокращается и мышца. Биотоки сердца возбуждают нерв, а он – мышцу.

В дальнейшем биотоки были обнаружены во всех возбудимых тканях при их деятельности. В 1800 году Герман назвал токи, сопровождающие процесс возбуждения, потенциалами или токами действия. Этот термин применяется и в наши дни, а токи действия считаются лучшим показателем возбуждения тканей.

Токи действия можно зарегистрировать.

Это делают микроэлектродным способом. Один электрод располагают на поверхности, а микроэлектрод вводят в клетку. При этом регистрация идет на фоне токов покоя или мембранного потенциала. Сразу после введения электрода внутрь клетки осциллограф регистрирует наличие потенциала покоя, который равен – 70 мв. Если после этого раздражать клетку надпороговым раздражителем, действующим рядом с внеклеточным электродом, то клетка возбуждается и осциллограф записывает кривую однофазного тока действия, которая отражает быстрое колебание мембранного потенциала. В момент возбуждения кривая круто поднимается вверх, доходит до 0 и затем превышает его. После этого возбуждение покидает точку воздействия и заряд мембраны восстанавливается до -70мв.

Читать еще:  Металлопласт или полипропилен

При этом регистрируется однофазный потенциал действия (рис.8). В кривой однофазного тока действия выделяют несколько частей. Восходящую часть кривой называютфазой деполяризации, поскольку она отражает процесс уменьшения и исчезновения исходной поляризации мембраны. Эта фаза протекает наиболее быстро. Вершину тока действия называютспайком.Нисходящее колено характеризует восстановление исходной поляризации мембраны и называютфазой реполяризации. В этой фазе различают 2 части –быстрой реполяризациис крутым падением кривой имедленной,когда восстановление мембранного потенциала замедляется, Эту часть нередко называютследовым отрицательным потенциалом. После него в некоторых тканях (безмякотных нервах) наблюдаетсяследовой положительный потенциал, увеличение заряда мембраны, еегиперполяризация.

Ионный механизм потенциала действия впервые попытался объяснить Ю. Берншетейн в 1912 году с позиции «теории прорыва ионного барьера». Согласно этой гипотезе, при действии раздражителя мембрана теряет свою избирательность и все ионы получают возможность двигаться по своим концентрационным градиентам: Na– в клетку, К – на поверхность. Их концентрация над и под мембраной выравнивается и мембранный потенциал в возбужденном участке исчезает. Это длиться очень короткое время, после чего мембранный потенциал полностью восстанавливается. По Бернштейну амплитуда токов действия равна величине мембранного потенциала.

Эта теория была распространена до микроэлектродных исследований Ходжкина и Катца (1949). В своих опытах на гигантских нервных волокнах кальмара ими было установлено, что токи действия имеют большую величину, чем токи покоя: МП при возбуждении не просто падает до 0, а изменяется на противоположный — наружная поверхность заряжается отрицательно по отношению к внутренней.

Ходжкиным, Хаксли, Катц (1952) впервые выдвинули теорию об индивидуальном участии различных ионов в формировании потенциала действия (рис.9).

Согласно этой теории потенциал действия имеет несколько фаз:

1) фазаградуальной деполяризации– это время от момента нанесения раздражителя до достижения уровня критической деполяризации, после чего развивается высокоамплитудная часть потенциала действия. Градуальная деполяризация характеризуется постепенным раскрытием натриевых каналов, медленным вхождением ионов натрия в клетку по концентрационному градиенту и постепенным снижением МП. Длительность первой фазы для нервной ткани — 0,00004 сек, для скелетной мышцы – 0,0001 сек. При снижении мембранного потенциала до Екр, происходит открытие всех натриевых каналов и развивается следующая фаза.

2) фаза быстрой деполяризации —это время развития пика от начала его возникновения до вершины. Открываются все натриевые каналы, и ионы натрия лавинообразно поступают внутрь клетки по концентрационному и электрохимическому градиенту. В эту фазу смещение мембранного потенциала протекает стремительно, он снижается и приобретает положительный заряд, достигающий величины +30-+40 мВ. Это называетсяпиком деполяризацииилиспайком.Амплитуда потенциала действия равна 100-120 мВ.

Длительность этой фазы для нерва равна приблизительно 0,001-0,002 сек, для мышцы – приблизительно 0,005 сек.

3) фаза реполяризации– определяется временем снижения мембранной поляризации до исходного уровня. Начинается в момент достижения заряда мембраны +30-+40мВ. В этот момент инактивируются натриевые каналы и активируются калиевые каналы. Проницаемость для ионов калия увеличивается и он начинает выходить из клетки. Этот период имеет два отрезка времени – относительно быстрое снижение поляризации мембраны(быстрой реполяризации), и последующее более медленное снижение поляризации клетки (медленная реполяризация), которое называетсяотрицательный следовой потенциал.Медленное снижение мембранной поляризации обусловлено включением в работу активных механизмов переноса ионов натрия и калия (калий-натриевый насос). Длительность третьей фазы для нерва равна 0,02-0,03 сек, для мышцы — приблизительно 0,05-0,1 сек.

4) фаза гиперполяризации (положительный следовой потенциал)– снижение поляризации клеточной мембраны ниже исходной величины. Гиперполяризация характерна для немиелинизированных нервных волокон. Ее связывают с временно увеличенной проницаемостью для ионов К + . Длительность следовой электроположительности для нерва приблизительно равна 0,1 сек, для мышцы – 0,25 сек и больше.

После гиперполяризации МП полностью нормализуется до исходных -70мВ. Подобные ПД наблюдаются в любой возбудимой системе, протекая с различной скоростью и занимая различное время. ПД развивается по закону «все или ничего».

Токи действияслужат одним из самых объективных критериев возбуждения, поэтому их регистрация используется для оценки работы многих органов: ЭКГ, ЭЭГ, электромиография и т.д. Токи действия нашли практическое применение в протезировании – в создании управляемых протезов.

Натриево-калиевый насос или помпа

Однако пассивные механизмы не позволяют понять причины сохранения ионной асимметрии на протяжении всей жизни клетки, кроме того, было замечено, что многие вещества проходят через мембрану против градиента концентрации. Естественно, что этот процесс протекает с затратой энергии. Поэтому, такой механизм переноса называется активным.Активный перенос всегда является избирательным. Он был обнаружен в 1955 году Ходжкиным и названкалий-натриевый насос.

Он обеспечивает «откачивание» ионов натрия из клетки и транспорт ионов калия внутрь ее. Осуществляется это с помощью белка-переносчика. Он захватывает в цитоплазме клетки 3 иона натрия и переносят их наружу, где ионы отщепляются и таким образом выводятся из клетки. На наружной поверхности к переносчику присоединяются 2 иона калия, которые закачиваются внутрь клетки.

Работа эта осуществляется с затратой энергии, источником которой является аденозинтрифосфат (АТФ). Распад АТФ происходит под действием фермента АТФ-азы, при этом выделяется энергия, которая используется в работе калий-натриевого насоса. При сдвигах трансмембранной концентрации ионов, активность К-Na-насоса может автоматически регулироваться. В регуляции особое значение имеет аденозинтрифосфатаза, которая активируется при увеличении концентрации натрия в цитоплазме и калия в межклеточной жидкости.

Работа насоса приводит к следующим результатам:

1) поддерживает высокую концентрацию ионов К + внутри клетки, обеспечивая тем самым постоянство величины потенциала покоя,

2) поддерживает низкую концентрацию ионов натрия внутри клетки,

3) поддерживая концентрационный градиент натрия, натрий-калиевый насос способствует сопряженному транспорту аминокислот и глюкозы через клеточную мембрану.

Таким образом ионная асимметрия обусловлена как избирательной проницаемостью мембраны в состоянии покоя, так и деятельностью К-Na-насоса. Эту величину можно рассчитать по формуле Гольдмана:

Ем= ______ • ln ________________________________________________ , где

вн, н – их внутренняя и наружная концентрация.

Читать еще:  Микролифт что это

Изменение мембранного потенциала. Потенциал действия или токи действия

Биотоки наблюдаются не только при покое, но и при возбуждении тканей. Электрические процессы всегда сопровождают возбуждение и являются лучшим его критерием.

Впервые наличие биотоков при возбуждении было обнаружено Маттеучи в 1837 году в следующем опыте. Он брал 2 н.-м. препарата и нерв одного из них накладывал на мышцу другого, нерв которого раздражался электрическим током. при включении Эл. тока сокращалась не только раздражаемая мышца, но и другая. Этот факт объясняется тем, что при сокращении первой мышцы в ней возникают биотоки, сила которых достаточна для того, чтобы возбудить лежащий на ней нерв второго препарата и вызвать сокращение иннервируемой мышцы.

В 1954 году Мюллер и Кёлликер установили, что электрические явления сопровождают и деятельность сердца. Они накладывали на сокращающееся сердце теплокровного животного нерв н.-м. препарата икроножной мышцы лягушки и наблюдали, что при каждом сокращении сердца одновременно сокращается и мышца. Биотоки сердца возбуждают нерв, а он – мышцу.

В дальнейшем биотоки были обнаружены во всех возбудимых тканях при их деятельности. В 1800 году Герман назвал токи, сопровождающие процесс возбуждения, потенциалами или токами действия. Этот термин применяется и в наши дни, а токи действия считаются лучшим показателем возбуждения тканей.

Токи действия можно зарегистрировать.

Это делают микроэлектродным способом. Один электрод располагают на поверхности, а микроэлектрод вводят в клетку. При этом регистрация идет на фоне токов покоя или мембранного потенциала. Сразу после введения электрода внутрь клетки осциллограф регистрирует наличие потенциала покоя, который равен – 70 мв. Если после этого раздражать клетку надпороговым раздражителем, действующим рядом с внеклеточным электродом, то клетка возбуждается и осциллограф записывает кривую однофазного тока действия, которая отражает быстрое колебание мембранного потенциала. В момент возбуждения кривая круто поднимается вверх, доходит до 0 и затем превышает его. После этого возбуждение покидает точку воздействия и заряд мембраны восстанавливается до -70мв.

При этом регистрируется однофазный потенциал действия (рис.8). В кривой однофазного тока действия выделяют несколько частей. Восходящую часть кривой называютфазой деполяризации, поскольку она отражает процесс уменьшения и исчезновения исходной поляризации мембраны. Эта фаза протекает наиболее быстро. Вершину тока действия называютспайком.Нисходящее колено характеризует восстановление исходной поляризации мембраны и называютфазой реполяризации. В этой фазе различают 2 части –быстрой реполяризациис крутым падением кривой имедленной,когда восстановление мембранного потенциала замедляется, Эту часть нередко называютследовым отрицательным потенциалом. После него в некоторых тканях (безмякотных нервах) наблюдаетсяследовой положительный потенциал, увеличение заряда мембраны, еегиперполяризация.

Ионный механизм потенциала действия впервые попытался объяснить Ю. Берншетейн в 1912 году с позиции «теории прорыва ионного барьера». Согласно этой гипотезе, при действии раздражителя мембрана теряет свою избирательность и все ионы получают возможность двигаться по своим концентрационным градиентам: Na– в клетку, К – на поверхность. Их концентрация над и под мембраной выравнивается и мембранный потенциал в возбужденном участке исчезает. Это длиться очень короткое время, после чего мембранный потенциал полностью восстанавливается. По Бернштейну амплитуда токов действия равна величине мембранного потенциала.

Эта теория была распространена до микроэлектродных исследований Ходжкина и Катца (1949). В своих опытах на гигантских нервных волокнах кальмара ими было установлено, что токи действия имеют большую величину, чем токи покоя: МП при возбуждении не просто падает до 0, а изменяется на противоположный — наружная поверхность заряжается отрицательно по отношению к внутренней.

Ходжкиным, Хаксли, Катц (1952) впервые выдвинули теорию об индивидуальном участии различных ионов в формировании потенциала действия (рис.9).

Согласно этой теории потенциал действия имеет несколько фаз:

1) фазаградуальной деполяризации– это время от момента нанесения раздражителя до достижения уровня критической деполяризации, после чего развивается высокоамплитудная часть потенциала действия. Градуальная деполяризация характеризуется постепенным раскрытием натриевых каналов, медленным вхождением ионов натрия в клетку по концентрационному градиенту и постепенным снижением МП. Длительность первой фазы для нервной ткани — 0,00004 сек, для скелетной мышцы – 0,0001 сек. При снижении мембранного потенциала до Екр, происходит открытие всех натриевых каналов и развивается следующая фаза.

2) фаза быстрой деполяризации —это время развития пика от начала его возникновения до вершины. Открываются все натриевые каналы, и ионы натрия лавинообразно поступают внутрь клетки по концентрационному и электрохимическому градиенту. В эту фазу смещение мембранного потенциала протекает стремительно, он снижается и приобретает положительный заряд, достигающий величины +30-+40 мВ. Это называетсяпиком деполяризацииилиспайком.Амплитуда потенциала действия равна 100-120 мВ.

Длительность этой фазы для нерва равна приблизительно 0,001-0,002 сек, для мышцы – приблизительно 0,005 сек.

3) фаза реполяризации– определяется временем снижения мембранной поляризации до исходного уровня. Начинается в момент достижения заряда мембраны +30-+40мВ. В этот момент инактивируются натриевые каналы и активируются калиевые каналы. Проницаемость для ионов калия увеличивается и он начинает выходить из клетки. Этот период имеет два отрезка времени – относительно быстрое снижение поляризации мембраны(быстрой реполяризации), и последующее более медленное снижение поляризации клетки (медленная реполяризация), которое называетсяотрицательный следовой потенциал.Медленное снижение мембранной поляризации обусловлено включением в работу активных механизмов переноса ионов натрия и калия (калий-натриевый насос). Длительность третьей фазы для нерва равна 0,02-0,03 сек, для мышцы — приблизительно 0,05-0,1 сек.

4) фаза гиперполяризации (положительный следовой потенциал)– снижение поляризации клеточной мембраны ниже исходной величины. Гиперполяризация характерна для немиелинизированных нервных волокон. Ее связывают с временно увеличенной проницаемостью для ионов К + . Длительность следовой электроположительности для нерва приблизительно равна 0,1 сек, для мышцы – 0,25 сек и больше.

После гиперполяризации МП полностью нормализуется до исходных -70мВ. Подобные ПД наблюдаются в любой возбудимой системе, протекая с различной скоростью и занимая различное время. ПД развивается по закону «все или ничего».

Токи действияслужат одним из самых объективных критериев возбуждения, поэтому их регистрация используется для оценки работы многих органов: ЭКГ, ЭЭГ, электромиография и т.д. Токи действия нашли практическое применение в протезировании – в создании управляемых протезов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector